Learning probabilistic decision graphs

نویسندگان

  • Manfred Jaeger
  • Jens Dalgaard Nielsen
  • Tomi Silander
چکیده

Probabilistic decision graphs (PDGs) are a representation language for probability distributions based on binary decision diagrams. PDGs can encode (context-specific) independence relations that cannot be captured in a Bayesian network structure, and can sometimes provide computationally more efficient representations than Bayesian networks. In this paper we present an algorithm for learning PDGs from data. First experiments show that the algorithm is capable of learning optimal PDG representations in some cases, and that the computational efficiency of PDG models learned from real-life data is very close to the computational efficiency of Bayesian network models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Supervised classification using probabilistic decision graphs

A new model for supervised classification based on probabilistic decision graphs is introduced. A probabilistic decision graph (PDG) is a graphical model that efficiently captures certain context specific independencies that are not easily represented by other graphical models traditionally used for classification, such as the Näıve Bayes (NB) or Classification Trees (CT). This means that the P...

متن کامل

Risk-Sensitive Planning with Probabilistic Decision Graphs

Probabilistic AI planning methods that minimize expected execution cost have a neutral attitude towards risk. We demonstrate how one can transform planning problems for risk-sensitive agents into equivalent ones for risk-neutral agents provided that exponential utility functions are used. The transformed planning problems can then be solved with these existing AI planning methods. To demonstrat...

متن کامل

Probabilistic Decision Graphs - Combining Verification and AI Techniques for Probabilistic Inference

We adopt probabilistic decision graphs developed in the field of automated verification as a tool for probabilistic model representation and inference. We show that probabilistic inference has linear time complexity in the size of the probabilistic decision graph, that the smallest probabilistic decision graph for a given distribution is at most as large as the smallest junction tree for the sa...

متن کامل

Modelado Individualizado de Secuencias Simbólicas (MOISES) TIC2002-04019-C03

This project approaches the study, theoretical development, implementation, and empirical validation of formal concepts and the criteria for its use in the construction of predictive and descriptive models for symbolic sequences. In particular we will study the following model types: compression mechanisms (finitestate compressors and Lempel-Ziv algorithms), generalizations of graphs (probabili...

متن کامل

Chain Graphs : Interpretations, Expressiveness and Learning Algorithms

Probabilistic graphical models are currently one of the most commonly used architectures for modelling and reasoning with uncertainty. The most widely used subclass of these models is directed acyclic graphs, also known as Bayesian networks, which are used in a wide range of applications both in research and industry. Directed acyclic graphs do, however, have a major limitation, which is that o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Approx. Reasoning

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2006